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1. A number of  authors [1-3] have computed the electr ic  potent ial  distribution and the current density distribution 
in a moving fluid with isotropic conductivi ty.  In this connection, i t  is of interest to consider t h e  possibility of  e lec t r i c -  
al ly model ing such problems on mater ia l s  with a suitable conductivity tensor. Such a conductor, for example ,  is poly-  
crystal l ine bismuth placed in a magnet ic  f ield.  

Below it  is assumed that  the magnet ic  field and the ve loc i ty  field ate given. The flow of  fluid with tensor conduc- 
t ivi ty  is surrounded by wails consisting o f  insulators and perfect  conductors. The lat ter  may be electrodes across which 
certain e lect r ic  potentials are applied.  All the formulas are written in the MKSA system of units. 

Let us consider the conditions that  must be fulfil led i f  for a stationary model  without distributed current sources the 
current density distribution is to be the same as in a system with a moving fiuid. 

The equation of  current continuity and Ohm's law can be written in the following form: 

div j ---- O, j = - - ~  grad V .  (1 .1)  

Here j is the current density, V is the e lec t r ic  potential ,  and o is the electron conductivi ty tensor which in the co-  
ordinate  system with the magnet ic  field directed along t h e  z axis has the following form: 

o0 C ; o  o) 
----- t + t~B " t . 

\ 0 0 t + ~ B  s 
(i. 2) 

Here ~ is the Hall mobi l i ty ,  o 0 is the conduct ivi ty along the magne t ic  field, and gB = a~r. The analogous equa-  
tions for a system with a moving fluid have the form 

div j = O, j = a ( - - g r a d  V + v X B ) .  

Here v is the fluid veloci ty ,  and B is the magne t i c  induction vector.  

The second equation of (1.3) can be reduced to the form of  the second equation of (1.1), if  the vector 

(I. 3) 

E* ~ - -grad  V + v  X B 

can be represented as the gradient  of  some quantity W, which must also be made  to correspond with the e lec t r ic  potent ial  

in the mode.  This in turn, leads to the condit ion 

rotE* ~--- ( B . V ) v - -  (v .V)B - -  B d ivv  = 0 .  (1.4) 

In writing Eq. (1.4) use was made  of  the equation div B = 0. 

Condit ion (1.4) imposes a constraint on the configuration of the magnet ic  fields and ve loc i ty  fields for which mod-  
eling using models  without distributed current sources is possible. The simplest  case of  fulf i l lment  of this condit ion is 
that  in which each term of  (1.4) is equal to zero. If the first term is equal to zero, we get  the condit ion of  constancy of  

the veloci ty  vector at the lines of  force. If the second term is equal to zero, the magne t ic  induction vector must be con- 

stant along the streamlines.  If  the last t e rm is equal to zero, then the fluid must be incompressible.  

If condit ion (1.4) is satisfied, then at any point M we can de te rmine  the potent ia l  W correct  to a constant 

M 

w (M) = V (M) - -  I (v x n) .a l .  
Mo 

(i. 5) 

Here dI is an e l emen t  of  the integrat ion path. 

Ohm's law can now be written in the same form as for the model  

| = - - a  grad V. (1.6) 
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At the boundary with an insulator the boundary conditions for the potential  W and the electr ic  potential  in the case 
of the model  are also the same, which follows from the fact that the normal component of  the current density is zero 
and from the ident ica l  form of Ohm's law (1.6). Cases are possible where on a surface that is a good conductor the auxil- 
iary potent ial  W is constant together with V. Then, if at the electrodes we specify electr ic  potentials proportional to the 
corresponding values of  the potential  W for the system with a moving fluid, the distributions of  both potentials will be 

similar.  The current density distributions will also be similar.  In 

~ / / / / / / / ~ , -  ~z4i.xA~tat'~/-4//~/'~f//] this  case the quantity gB= w~ must be the same in each case. 
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2. The fringe effects were modeled in a rectangular channel 
with crossed fields and continuous electrodes. The magnet ic  field 
was assumed to be uniform. Owing to the nonuniformity of the veloc- 
i ty field over the section of  the channel 
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Fig. 1 

In accordance with (1.5), the potential  W for 

(B.V) ,~  4 = 0 

(the veloci ty  varies along the lines of force). However, as shown in 
[4], in the given ease the three-dimensional  problem can be re-  
duced to a plane problem for quantities averaged along the magne-  
t ic lines of force. This plane problem is solved by modeling (provid- 
ed that the other two terms in (1.4) are equal to zero). An analogous 
plane problem was modeled in [5] for the case of  scalar conduct ivi-  
ty. 

the plane case is written in the form 

W -~- V n t- Bq )  (OqJ / O!l ~ -  v~, - -  O ~  / Ox = v u ) ,  

To the two electrodes there corresponds a potential  difference W equal to 

W. ---- 110 + B r  (2 .2)  

Here V 0 is the e lec t r ic  potent ia l  difference between the electrodes, ~0 is the rate of  fluid flow referred to unit 
height of the channel along the magne t ic  field. 

In the problem with two electrodes all  possible distributions of the potential  W and current density are independent 

of the veloci ty  profile in a direct ion perpendicular to the magnet ic  field. 

The arrangement of  the model  is clear from Fig. 1. The fluid was modeled with a plate of polycrystal l ine bismuth 

with Hall mobi l i ty  g = 4000 cm~/V-sec at room temperature.  In order to increase the mobil i ty ,  we cooled the model  
to - 2 0 % .  In a magnet ic  field of  the order of 5000 gauss we obtained a value of  the product ~B = 0 . 3 - 0 . 4 .  This quantity 
was measured under the same conditions as for the model  on a special  specimen of the same bismuth. The electrodes 
were made  of copper with a cross section large enough for simulation of  the equipotent ial  surface. 

The device  worked on alternating current of  commer ica l  frequency. This made  it par t icular ly s imple to automate 
the process of  obtaining a picture of  the field and supplying the mod-  
el. We were able  to use al ternating current because of the l inear  char- 
acter of equations (1. 1) and the boundary conditions. At any point of  

the model  the e lec t r ic  potent ial  will  vary in accordance with the same 
law as at the electrodes.  Accordingly,  the equipotent ial  lines will  re -  
tain their position at any moment  of t ime.  

The potent ia l  distribution on the surface of the bismuth pla te  
was recorded by a compensat ion method using a bridge circuit  exact ly  
l ike  that used in working with e lec t ro ly t ic  baths. The registrat ion of 
equipotentials  was semiautomat ic  [6]. The vol tage  was picked up 
from the surface of the model  by a probe. By means of  a special  c i r -  

cuit  a capaci tor  was discharged through the probe when it  crossed a 
cer tain equipotential ,  and a mark was made  on the surface of  the mod-  

el. In this way we e l iminated  errors connected with transfer of  the m o -  
tion of  the probe and the configuration of  the model  to the drawing. An 

electronic circuit  registered passage of the phase of the probe signal 
through the value ~r/2 or of the ampl i tude  through zero when an equi -  

potent ia l  was crossed. 
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Fig. 2 

Figure 1 shows an example  of  a potent ia l  field recorded in this way in re la t ive  units together with the ca lcula ted  
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current density vector field for gB = 0.4. Here 1 denotes the copper electrode,  2 the bismuth plate .  The current density 
was calcula ted for o 0 = I from the formula 

i t ~ (2. a) 

The quantity j has the same dimension as the field strength. Conversion to the current density in the device With a 

moving fluid can be based on the formula 

j ----- J*%Wo / Uo~M' (2.4) 

where o 0 is the conductivity of  the fluid and M is the ratio of the dimensions of  the device to the dimensions of the mod- 

el. 

In est imating the accuracy of  the method it should be noted that the s imilar i ty  of  the current density distributions 
is exact  if  the above-ment ioned conditions are fulfi l led.  In order to es t imate  the accuracy of  construction of the field 
pattern, the accuracy of the model,  and the effect o f  the finite length of the model  "channel," we recorded the field for 
B = 0; the remaining conditions were kept the same. The field pattern and the results of the comparison are presented in 
Fig. 2. The maximum scatter of the equipotential  marks did not exceed 3% of  the electrode voltage.  The region of op-  
eration of  the automat ic  marker  did not exceed ,0. 1-0.2%. The  scatter of  the exper imenta l  points was condit ioned by the 
imperfect  mode l -p robe  contact  and the variat ion of  the model  temperature.  The field strength found from the potential  
distribution (solid arrows) was compared with that  computed from the formulas of  [7] (broken arrows), The error in de -  
termining the field strength, referred to its value in the Uniform field region, was, on the average,  10% for the points 
indicated on the drawing. This value should be taken as a measure  of the accuracy of the method, although in a number 

of  cases the accuracy may be overest imated.  

The use of  model ing makes i t  possible to reduce the labor of problem so lv ing .  Moreover, problems with tensor con- 

duct ivi ty depending on the coordinates can be solved very simply.  
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